
Field dependence of μSR signals in a polycrystalline magnet

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 456207

(http://iopscience.iop.org/0953-8984/19/45/456207)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 06:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/45
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 456207 (11pp) doi:10.1088/0953-8984/19/45/456207

Field dependence of µSR signals in a polycrystalline
magnet

F L Pratt

ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, UK

Received 17 August 2007, in final form 21 September 2007
Published 11 October 2007
Online at stacks.iop.org/JPhysCM/19/456207

Abstract
Studies of magnetically ordered materials using implanted muons usually focus
on the behaviour of the muon polarization in zero applied magnetic field,
where precession signals reflect the static internal fields that appear in the
magnetically ordered state. In many cases the magnetic behaviour under
applied magnetic field is also of interest. However, detailed analysis and
interpretation of field-dependent μSR signals requires a clear understanding
of the different types of behaviour that may be expected following various
possible responses of the spin distribution to the applied field. In order to
aid such investigations, quantitative analytical expressions are provided here
for polycrystalline systems describing the behaviour of the muon polarization
components and the precession frequency distribution in an applied field,
under the initial assumption that the magnetic sublattices are not significantly
perturbed by the applied field. Given these expressions, departures from this
simple unperturbed behaviour can then be identified and interpreted in terms
of the actual magnetic response to the applied field. An example is given using
this approach in the analysis of a metamagnetic transition in a layered molecular
magnet.

1. Introduction

The implanted muon has often been exploited as a local probe of magnetic systems [1, 2].
Studies usually focus on the behaviour of the muon polarization in zero applied field (ZF),
since the observation of zero field precession signals can give unambiguous evidence for the
presence of an internal field due to the onset of magnetic order. Besides these zero field studies,
it can also be very useful to study the muon polarization behaviour under applied magnetic
fields, in order to provide further information about the magnetic state and study any changes
that take place in response to the applied field. Data in finite fields can also provide a useful
consistency check on the interpretation of zero field data. However, previous applied field
studies have generally only been rather qualitative due to the lack of a clear framework on
which to base more quantitative studies. The present work therefore aims to fill this gap.
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The behaviour of the muon spin in this problem is described as a function of time t by the
longitudinal muon spin polarization function Gz(t), which gives the evolution of a muon spin
initially polarized in the z direction, normalized so that Gz(0) = 1. For a magnetically ordered
state in a ideal system with a unique muon site in zero externally applied field, the magnitude of
the internal field seen by the muon takes the single value B0. The polarization function Gz(t)
then contains a single oscillating component with amplitude Aosc and precession frequency
ω = γμ B0, where γμ = 2π × 135.5 MHz T−1 is the muon gyromagnetic ratio, along with a
non-precessing component with amplitude Az:

Gz(t) = Az + Aosc cos ωt . (1)

The specific case of a randomly oriented polycrystalline magnet is considered here. This
is the most common experimental sample configuration in μSR. In this case the internal
field vector is distributed uniformly over a sphere with radius B0, Az takes the value 1/3
and Aosc takes the value 2/3, reflecting the orientationally averaged projection of the internal
field distribution onto longitudinal and transverse components with respect to the initial muon
polarization direction z. The behaviour once a finite external magnetic field is applied is
however a rather more complex, problem and quantifying the expected behaviour in typical
experimental situations is the subject of this paper.

In real magnetic systems there is always some broadening of the distribution of internal
fields due to disorder and the effects of domain structure. Changes in the zero field muon
relaxation function produced by this broadening have been reported in several previous studies,
where such broadening is a dominant feature of the relaxation [3–5]. In this study we approach
from the opposite limit where the broadening of the internal field distribution due to disorder
is insignificant compared to the intrinsic ‘geometrical’ broadening produced by imposing an
externally applied field. To reflect disorder-related broadening, a distribution of B0 can be
reintroduced into the equations we will derive as a final stage, thus allowing both intrinsic
and extrinsic sources of broadening to be included. Likewise, the effects of finite dynamical
spin fluctuations can be reintroduced to our final results as an additional contribution to the
relaxation, with an associated contribution to the spectral broadening. Finally, it should also
be noted that there may be a further contribution to the internal field distribution from nuclear
dipolar fields; however, this is usually very much smaller than the electronic contribution and
any associated broadening will be insignificant compared to the intrinsic and extrinsic effects
related to the electronic spins.

2. Fixed spin system

The first situation to consider is the simplest possible case, where the effect of the field on the
internal magnetic structure is insignificant as far as a muon measurement is concerned and can
safely be ignored. This will generally be the case for weak applied fields where the magnetic
anisotropy of the material is the dominant factor defining the sublattice orientation. A single
implantation site is considered initially and the two cases of field orientation, longitudinal and
transverse to the initial muon spin polarization, are considered in turn.

2.1. Longitudinal field

When a longitudinal field (LF) is applied, the total internal field at a particular site is the vector
sum of B , the field applied externally along the axis z and the effective field from the ordered
moments B0, which has a single value but is randomly oriented in the polycrystalline powder
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Figure 1. Effect of external longitudinal field B applied along the z axis on the resultant internal
field Br for a muon site where the internal field contribution from the magnetic order has magnitude
B0 at angle θ to the z axis. The dots shows the origin of the internal field distribution in each case
and the circle represents a sphere describing the distribution of field contributions from magnetic
order in randomly oriented crystallites of a polycrystalline array.

sample, making an angle θ to the longitudinal axis z (figure 1). The resultant magnitude of the
internal field Br seen by the muon has the value

Br =
√

B2 + B2
0 + 2B0 B cos θ. (2)

Lower case notation will be used in the following to indicate fields normalized to B0 and
frequencies normalized to γμB0, i.e. b = f = B/B0 and br = Br/B0; (2) then becomes

br =
√

b2 + 1 + 2b cos θ. (3)

The angle φ between br and the longitudinal axis given by

cos2 φ = (b + cos θ)2

(b + cos θ)2 + (sin θ)2
. (4)

The longitudinal polarization Az is obtained by taking the orientational average of (4) with
respect to θ

Az = cos2 φ =
∫ π

0

sin θ

2
dθ

b2 + 2b cos θ + cos2 θ

b2 + 2b cos θ + 1
. (5)

The remaining fraction of the polarization Aosc is transverse to the resultant field and provides
the precession component. Evaluating the polarization integral (5) leads to the following
functional forms for the two components against field:

Az(b) = 3

4
− 1

4b2
+ (b2 − 1)2

8b3
log

∣∣∣∣
b + 1

b − 1

∣∣∣∣ (6)

and

Aosc(b) = 1 − Az(b). (7)

The expression (6) for the longitudinal repolarization was originally reported by Satooka et al
[6], although it should be noted that their intermediate expression was printed incorrectly; an
earlier statement of it by Maruta et al [7] also had a misprint in the second term. The behaviour
of (6) is shown in figure 2. Note that at the field where b = 1 the absolute polarization
reaches 1/2, whereas the midpoint of the polarization recovery is actually at a field value that
is somewhat higher and close to b = 4/3. The width of the repolarization is also significantly
narrower than the type of repolarization seen, for example, when decoupling the elements of
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Figure 2. Dependence of Az on longitudinal field b for a polycrystalline ordered magnet (solid line).
The dotted line shows for comparison a quadratic-type decoupling function 1/3+2/3(b2/(1+b2)).

the hyperfine tensor in muonium-type states [8], which usually contain terms taking a quadratic
decoupling form such as b2/(1+b2); these clearly decouple more slowly than (6) (see figure 2).

Turning to the precession component, it is clear that following (7) the precession amplitude
will fall with field as the longitudinal component increases. It is also of interest to see how the
muon precession frequency distribution changes as the external field increases. The mean of
the frequency distribution seen by the muon fave (=bave) and its RMS width frms (=brms) can
be calculated in a similar manner to the polarization, with the contributions to the field averages
being weighted by the precession amplitude, which follows sin2 φ, giving

fave = bave =
∫ π

0 dθ sin θ sin2 φ br∫ π

0 dθ sin θ sin2 φ
, (8)

f 2
rms = b2

rms =
∫ π

0 dθ sin θ sin2 φ b2
r∫ π

0 dθ sin θ sin2 φ
− f 2

ave. (9)

After performing the integrations, the following analytical expressions are obtained:

fave = 16

15

P

Q
, (10)

f 2
rms = 32b3

3Q
− f 2

ave (11)

with

Q = 4b(1 + b2) − 2(1 − b2)2 log

∣∣∣∣
b + 1

b − 1

∣∣∣∣ (12)

and

P = 10b3 − 2b5 0 � b < 1

= 10b2 − 2 b > 1. (13)

When b = 1, fave = 16/15 and frms = √
44/15. The behaviour of the resultant internal field

parameters given by (10) and (11) is shown in figure 3, together with the amplitudes of the
longitudinal and transverse components given by (6) and (7). A remarkably sharp change in
the field-dependent behaviour of fave and frms is seen to take place around b = 1. In the high
field limit fave → b and frms → 1/

√
5.
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Figure 3. Field-dependent properties of the muon signal in a polycrystalline ordered magnet,
described by (6)–(19). The upper plot shows the parameters of the precession frequency
distribution and the lower plot shows the relative amplitudes of the transverse (precessing) and
longitudinal (non-precessing) components Aosc and Az . The field direction is either parallel (LF) or
perpendicular (TF) to the initial muon spin direction.

2.2. Transverse field

When the field is applied in the transverse orientation, i.e. perpendicular to the initial muon spin
direction z rather than parallel to it (TF case), the calculation is a little more complicated, as
one no longer has the benefit of axial symmetry for performing the orientational averaging.
Analytical expressions of similar form to the longitudinal ones can nevertheless still be
obtained. The expressions for the polarization components are

Az(b) = 1

8
+ 1

8b2
− (b2 − 1)2

16b3
log

∣∣∣∣
b + 1

b − 1

∣∣∣∣ (14)

and

Aosc(b) = 1 − Az(b). (15)

The frequency distribution parameters are

fave = bave = 16

15

P

Q
(16)
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and

f 2
rms = b2

rms = 32b5 + 64b3/3

Q
− f 2

ave (17)

with

Q = 4b(7b2 − 1) + 2(1 − b2)2 log

∣∣∣∣
b + 1

b − 1

∣∣∣∣ (18)

and

P = 12b5 + 20b3 0 � b < 1

= 30b4 + 2 b > 1. (19)

When b = 1, fave = 64/45 and frms = √
404/45. The behaviour of the resultant internal

field parameters given by (16) and (17) is shown as dashed lines in figure 3, together with
the amplitudes of the longitudinal and transverse components given by (14) and (15). In the
high field limit one finds again that fave → b, although the approach is slower than in the
longitudinal case, and frms → 1/

√
3, a factor of

√
5/3 larger than for the longitudinal case.

It is notable that the change in the field-dependent behaviour of fave and frms around b = 1 is
much less sharp in the TF case than in the LF case.

2.3. Precession spectra and relaxation functions

Whereas relatively simple expressions can be derived for Az , Aosc and the moments of the
precession frequency spectrum, as has been shown in the previous two sections, full analytical
expressions for the relaxation functions in the general case are rather cumbersome and the
relaxation functions are best evaluated by numerical integration. In contrast to the relaxation
functions, the precession frequency spectra can be expressed relatively simply: for the LF case
the spectral intensity S(br , b) of the precession signal is given for finite b by

S(br , b) = b2
r − (b + cos θ)2

2br b
|b − 1| < br < b + 1 (20)

with cos θ given by (3) and S(br , b) = 0 outside this range. The corresponding field-dependent
relaxation function Gz(t, b) is then given by

Gz(t, b) = Az(b) +
∫

S(br , b) cos(γμbr t) dbr , (21)

where Az(b) = ∫
(1 − S(br , b)) dbr evaluates to (6) and the t scale is measured in units of the

precession period at b = 0. The resulting behaviour is illustrated in figure 4. It can be seen that
the distribution is quite symmetric except near b = 1. The extrema of the distribution have zero
spectral weight, as the resultant field there is parallel to z. From the behaviour seen in figure 4
it is expected that a Gaussian function would provide a reasonably good first approximation to
the spectrum and to the damping envelope of the precession signal.

For the TF case the precession frequency spectrum takes a rather different form

S(br , b) = b2
r − (1 − cos2 θ)/2

2br b
|b − 1| < br < b + 1 (22)

and the relaxation function is derived by substituting equations (14) and (22) in (21). As can
be seen in figure 5 the spectrum shows a distinct splitting at lower fields and an asymmetric
distribution as b increases, weighting the higher field side more strongly than the lower field
side. In contrast to the LF case, the extrema of the distribution have a high spectral weight. The
asymmetry of the spectrum starts to decrease again for b > 1 and at very high b the spectrum
will tend towards a uniform top-hat function.
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Figure 4. Evolution of the precession frequency spectrum and corresponding relaxation function
with longitudinal applied field.

2.4. Discussion

Under the typical μSR experimental conditions of limited counting statistics and finite spectral
broadening it may be difficult to resolve clearly the spectral features discussed in section 2.3;
however, the ratio of the precessing and non-precessing components and the first moment
of the precession frequency distribution derived in sections 2.1 and 2.2 can be measured
more accurately and should be relatively robust against such experimental constraints. These
parameters are therefore likely to provide the best way to detect changes in the spin distribution
under applied field, which is the underlying motivation of this study; this will be discussed in
the following section. Another aspect of real experimental systems is that there are often several
muon sites and if the internal fields Bi at these sites are sufficiently different then a number
of repolarization terms like (6) will be resolvable, as was demonstrated in measurements
reported by Maruta et al [7]. If the Bi are relatively close then the contributions may not
be individually resolved and a single repolarization feature will occur, but it will be broader
than a single term described by (6). Similarly, a broadening is expected if the magnetic state
itself contains significant disorder and a repolarization that is broader than predicted by (6) may
be an indication of the presence of such a magnetic state. In principle for the fixed sublattice
case the distribution of internal fields may be reconstructed from the measured repolarization
behaviour using knowledge of the functional form (6) of Az , i.e.

Aave
z (B) =

∫
Az(B/B ′)p(B ′) dB ′, (23)

where Aave
z (B) is the measured longitudinal polarization and p(B ′) describes the internal field

distribution before the application of the field B . This provides a complement to the direct
use of spectral analysis methods on the precession signal. In the case of a study made at a
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Figure 5. Evolution of the precession frequency spectrum and corresponding relaxation function
with transverse applied field.

pulsed muon facility such as ISIS, some of the precession signals may in any case lie beyond
the accessible frequency response of the instrument and this decoupling technique provides an
alternative method of obtaining information about any muon sites with large associated internal
fields that may be present, without the need to observe their precession signals directly.

3. Field-perturbed spin system

Having established the basic behaviour expected for the case where the magnetic spin system
is not significantly perturbed by the fields applied in a muon study, it is now possible to
explore the type of behaviour expected where the arrangement of the ordered spin system is
modified by the applied field. This will, for example, happen where one is working with
a relatively soft magnetic system and the fields that can typically be applied in the muon
spectrometer may be sufficiently large to also produce significant changes in the orientational
distribution of the magnetic moments themselves, for example by rotation and resizing of
magnetic domains in the ferromagnetic case or by producing a spin-flop or spin-flip type
transition in the antiferromagnetic case. Here the exact effect on the muon polarization would
depend on the precise details of the magnetic structure, the muon site and the type of coupling
of the muon to the magnetic spin system. In nearly all cases however, information about
changes occurring in the magnetic state will be obtainable from comparing the actual measured
precession frequency and polarization amplitude behaviour to the ideal reference case described
in the previous section by equations (6)–(19), which describe the behaviour when the magnetic
moments are fixed in their zero applied field configuration. For field-perturbed spins, the type
of behaviour to be expected and the best way to monitor it can be considered for two general
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cases, dependent on whether the major changes in the spin distribution take place for applied
fields above or below the original internal field B0, i.e. whether b < 1 or b > 1.

3.1. Transition for b < 1

The precession signal in LF mode would appear to be the best probe of the magnetic state when
the change in the spin configuration occurs for b < 1, since the precession frequency still has
large amplitude in this field range and shows hardly any intrinsic field dependence (figure 3).
Quite subtle changes in the spin structure should be observable under these conditions, revealed
by departures of the frequency and amplitude of the precession signal from the static behaviour,
which is almost constant in this regime.

3.2. Transition for b > 1

When a spin transition takes place in the b > 1 high field region then the precession signal
for TF configuration would appear to be the best probe, as it has a relatively large amplitude
in this region (figure 3). However, studies at a pulsed facility such as ISIS may run into
frequency response limitations at high fields and in this case we expect that monitoring of
the non-precessing component Az in LF mode, which can be done very accurately at a pulsed
facility, would then provide the best way of detecting and studying the spin transition.

3.3. An experimental example

An example of a low-field spin transition measured by μSR at ISIS in the antiferromagnetic
bilayer system CuW(CN)8(tetrenH5)0.8·7H2O [9] is shown in figure 6. Full details of the μSR
studies on this compound are reported in an accompanying paper [10]. This material has
its main magnetic ordering transition around 33 K and behaves as an easy-plane AF at low
fields. However, at higher fields it has a metamagnetic transition, switching from AF to FM
behaviour [11]. This transition can be assigned to overcoming a weak AF interaction between
the strongly FM-coupled bilayer units and it has been observed to take place for applied fields
in the region of 50 G at temperatures well below the magnetic transition [11]. In the ZF μSR
of this material in the magnetically ordered state there are two main precession components,
corresponding at low temperatures to internal fields of B1 = 62 and B2 = 121 G with
asymmetry amplitudes a1 and a2 [10]. Using this information, the expected field dependence
of the total oscillation amplitude can then be calculated as a sum of two terms

astatic(B) = a1 Aosc(b1) + a2 Aosc(b2), (24)

where b1 = B/B1, b2 = B/B2 and Aosc(b) is given by (7). The measured total oscillation
amplitude is shown in figure 6(a) along with the static prediction (24). The difference �a
between the measured amplitude and the static prediction is shown in figure 6(b). It can be seen
that the asymmetry first starts to deviate from the static value above 15 G and between 15 and
40 G it falls faster than the static value, indicating that the internal field distribution is becoming
more closely aligned with the applied field than in the static case. The main metamagnetic
transition is revealed by the sharp increase in �a above 50 G, indicating a significant change
in the field distribution, this time producing an increased weighting of internal fields that are
transverse to the applied field.

A simple model can be used to describe the spin transition as seen by the muons. In the
polycrystalline sample it is assumed that the spins are constrained to lie in the easy plane of
each crystallite and the transition occurs when the in-plane field component is greater than a
threshold field Bc, which is assumed to be isotropic within the plane. Polycrystalline averaging
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Figure 6. (a) Effect of a longitudinal field on the total amplitude of precession signal at 14 K
in the layered magnet CuW(CN)8(tetrenH5)0.8·7H2O. The solid line shows the predicted field
dependence (24) for a fixed spin distribution on the basis of the frequencies and amplitudes
measured in zero field [10]. (b) The difference between the measured total precession amplitude
and the static prediction. The solid line is the result of fitting to model (27), as described in the text.
Regions are indicated where the changes in �a are mainly due to spin rotation and mainly due to
spin flip.

then leads to the following field-dependent function describing the fraction of the sample that
is above the transition

f (B) = 0 B < Bc

f (B) = 1 − (Bc/B)n B > Bc
(25)

with n = 2 for this XY anisotropy model. If the anisotropy was of the Ising type, constraining
the spins to lie in one direction within the plane, then the smaller value n = 1 would be
expected, giving a more slowly rising function. In contrast, an ideal isotropic Heisenberg
system would have a sharp transition corresponding to an infinite value for n. The contribution
of non-flipped crystallites is important below Bc, and above a small threshold field Bt it gives a
linear dependence representing spin rotation processes, i.e.

arot(B) = 0 B < Bt,

arot(B) = α(B − Bt) B > Bt.
(26)

The data of figure 6(b) are found to be well described by the sum of flipped and non-flipped
(rotated) terms

�a(B) = f (B)aflip + (1 − f (B))arot(B). (27)

Fitting the data to (27) gives the values Bc = 56(1) G, aflip = 2.6(1)% and n = 3.4(4), with a
Gaussian broadening of 12(3) G for f (B) also being included in the fit. These parameters are
consistent with the results obtained from direct magnetic measurements [10, 11] and with the
dominance of easy-plane type spin constraints for this system.
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4. Conclusion

In this study the internal magnetic field distribution seen by a muon probe implanted into
a polycrystalline magnet has been investigated as a function of the applied magnetic field.
The case of a rigid spin distribution has been considered in detail in both the LF and TF
configurations. Expressions have been obtained in each case for the field dependence of
the amplitudes of the precessing and non-precessing components of the relaxation function
and the functional form of the precession field distribution, along with the first and second
moments of the distribution. Appropriate relaxation functions can easily be computed from
these distributions. These expressions provide a useful point of reference for muon studies in
the more general situation of a magnet in which the spin distribution is not rigidly fixed to its
zero field value, but, by various mechanisms, becomes significantly modified in response to
the applied field. In this case, the changes in the field distribution are revealed as deviations
from the static expressions. A particular application is the study of metamagnetic transitions.
This has been illustrated with a specific experimental example of a system showing a low-field
spin transition, which is clearly revealed in the field-dependent amplitude of the total muon
spin precession signal. The example provides a good demonstration that oriented single crystal
measurements are not always needed for the study of metamagnetic transitions and that valuable
information can be extracted from the field-dependent study of polycrystalline samples using
μSR. It is anticipated that the results of this work should be useful in further such studies of
field-dependent magnetic transitions using muons.
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